A unified Bayesian framework for MEG/EEG source imaging
نویسندگان
چکیده
The ill-posed nature of the MEG (or related EEG) source localization problem requires the incorporation of prior assumptions when choosing an appropriate solution out of an infinite set of candidates. Bayesian approaches are useful in this capacity because they allow these assumptions to be explicitly quantified using postulated prior distributions. However, the means by which these priors are chosen, as well as the estimation and inference procedures that are subsequently adopted to affect localization, have led to a daunting array of algorithms with seemingly very different properties and assumptions. From the vantage point of a simple Gaussian scale mixture model with flexible covariance components, this paper analyzes and extends several broad categories of Bayesian inference directly applicable to source localization including empirical Bayesian approaches, standard MAP estimation, and multiple variational Bayesian (VB) approximations. Theoretical properties related to convergence, global and local minima, and localization bias are analyzed and fast algorithms are derived that improve upon existing methods. This perspective leads to explicit connections between many established algorithms and suggests natural extensions for handling unknown dipole orientations, extended source configurations, correlated sources, temporal smoothness, and computational expediency. Specific imaging methods elucidated under this paradigm include the weighted minimum l(2)-norm, FOCUSS, minimum current estimation, VESTAL, sLORETA, restricted maximum likelihood, covariance component estimation, beamforming, variational Bayes, the Laplace approximation, and automatic relevance determination, as well as many others. Perhaps surprisingly, all of these methods can be formulated as particular cases of covariance component estimation using different concave regularization terms and optimization rules, making general theoretical analyses and algorithmic extensions/improvements particularly relevant.
منابع مشابه
MEG source localization under multiple constraints: an extended Bayesian framework.
To use Electroencephalography (EEG) and Magnetoencephalography (MEG) as functional brain 3D imaging techniques, identifiable distributed source models are required. The reconstruction of EEG/MEG sources rests on inverting these models and is ill-posed because the solution does not depend continuously on the data and there is no unique solution in the absence of prior information or constraints....
متن کاملMultimodal integration: constraining MEG localization with EEG and fMRI
I review recent methodological developments for multimodal integration of MEG, EEG and fMRI data within a Parametric Empirical Bayesian framework [1]. More specifically, I describe two ways to incorporate multimodal data during distributed MEG/EEG source reconstruction under linear Gaussian assumptions: 1) the simultaneous inversion of EEG and MEG data using a common generative model [2], and 2...
متن کاملAlgorithmic procedures for Bayesian MEG/EEG source reconstruction in SPM☆
The MEG/EEG inverse problem is ill-posed, giving different source reconstructions depending on the initial assumption sets. Parametric Empirical Bayes allows one to implement most popular MEG/EEG inversion schemes (Minimum Norm, LORETA, etc.) within the same generic Bayesian framework. It also provides a cost-function in terms of the variational Free energy-an approximation to the marginal like...
متن کاملfMRI-EEG integrated cortical source imaging by use of time-variant spatial constraints
In response to the need of establishing a high-resolution spatiotemporal neuroimaging technique, tremendous efforts have been focused on developing multimodal strategies that combine the complementary advantages of high-spatial-resolution functional magnetic resonance imaging (fMRI) and high-temporal-resolution electroencephalography (EEG) or magnetoencephalography (MEG). A critical challenge t...
متن کاملA Parametric Empirical Bayesian Framework for the EEG/MEG Inverse Problem: Generative Models for Multi-Subject and Multi-Modal Integration
We review recent methodological developments within a parametric empirical Bayesian (PEB) framework for reconstructing intracranial sources of extracranial electroencephalographic (EEG) and magnetoencephalographic (MEG) data under linear Gaussian assumptions. The PEB framework offers a natural way to integrate multiple constraints (spatial priors) on this inverse problem, such as those derived ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 44 3 شماره
صفحات -
تاریخ انتشار 2009